SYNTHETIC STUDIES DIRECTED AT (±)-QUADRONE. A NEW END GAME.

Steven D. Burke, * Charles William Murtiashaw, and Jeffrey A. Oplinger

Department of Chemistry, University of South Carolina Columbia, South Carolina 29208

Summary: A synthesis of (\pm) -quadrone $(\underline{1})$ is described, featuring an intramolecular delivery of the $C(\delta)$ -carbon, thus avoiding possible regio- and stereochemical complications in the δ -lactone construction.

<u>Sir</u>: We recently reported 1 a formal total synthesis of (±)-quadrone ($\underline{1}$), a fungal metabolite from <u>Aspergillus</u> terreus which exhibits in vitro and in vivo cytotoxicity. This effort proceeded from the spiro[4.5]decadienone $\underline{2}$, via the tricyclic enedione $\underline{3}$, to the acetaldehyde derivative 4. Oxidative dehomologation followed by deketalization afforded the tricyclic keto

ester $\underline{5}$, a point of intersection with an earlier synthesis of (\pm)-quadrone by Danishefsky and co-workers. ^{3a} Although this one-carbon degradation was serviceable in securing a formal synthesis, we were dissatisfied with the excision of a carbon atom from $\frac{4}{4}$, only to face the non-trivial introduction of the incipient C(6)-carbon at the C(5)-site. We describe herein a sequence by which $\frac{4}{4}$ is converted directly to (\pm)-quadrone (\pm), thus avoiding the wasteful dehomologation.

The requirements for the conversion of $\underline{4}$ to $\underline{1}$ were as follows: (1) the formation of the C(5)-C(6) bond, with the aldehyde carbon serving as C(6); (2) the upward and downward adjustments of oxidation state, respectively, at the incipient C(7) and C(6) sites; (3) the disconnection of these two carbons in $\underline{4}$ and their reattachment through oxygen to give the δ -lactone unit in $\underline{1}$. These requirements were met as outlined in the Scheme.

Deketalization of $\frac{4}{2}$ (2N HCl, acetone, 25°C, 3 h) gave the aldehyde $\frac{6}{2}$ (mp 77-79°C) in 86% yield. Acid-catalyzed aldol cyclization (HOAc, H_2SO_4 , 25°C, 27 h) provided a mixture (4:1 by 1H NMR) of the β -acetoxyketones $\frac{7}{2}$ (79%) which, upon thermolysis (neat, sealed tube, 400°C, 4 min), afforded a 61% yield of tetracyclic, β , γ -unsaturated ketone $\frac{8}{2}$, along with a 33% yield of the corresponding α , β -unsaturated isomer. Reduction of the ketone carbonyl (LiAlH₄, Et₂0, -30°C, 1 h), followed by hydroxyl protection [t-BuMe₂SiCl (2 equiv), imidazole (4 equiv), DMF, 25°C, 2 h]⁵ gave a single t-butyldimethylsilyl ether $\frac{9}{2}$ in 96% yield. Ozonolysis of $\frac{9}{2}$ followed by reductive work-up of the crude product (NaBH₄, EtOH, O>25°C) provided a 70% yield of the crystalline diol 10 (mp 139-140°C).

A two-stage oxidation of $\underline{10}$ to give (\pm)-quadrone ($\underline{1}$) was accomplished by two methods, with comparable efficiency. Treatment of $\underline{10}$ with pyridinium chlorochromate (3 equiv, NaOAc, $\mathrm{CH_2Cl_2}$, 0+25°C) followed by Jones oxidation (0+25°C, 25 min) gave (\pm)-quadrone ($\underline{1}$) (mp 139-141°C; lit. 3a 140-142°C) in 45% yield. Alternatively, treatment of $\underline{10}$ with Fetizon's reagent (Ag₂CO₃-Celite, PhH, reflux, 40 min) followed by Jones oxidation also afforded a 45% yield of crystalline (\pm)-quadrone ($\underline{1}$). In each case, the racemic quadrone so produced was identical by IR, MS, TLC, and 400 MHz 1 H NMR data to a sample generously supplied by Professor Danishefsky. The modest overall yields of quadrone from these two-stage oxidations reflect a lack of regionselectivity in the diol-to- δ -lactone conversion. The regionsomeric lactone $\underline{11}$ was isolated in 43% and 47% yields, respectively, after the initial oxidation steps by PCC or Fetizon's reagent.

 a (a) HOAc, H₂SO₄, 25°C, 27 h. (b) neat, sealed tube, 400°C, 4 min. (c) LiAlH₄, Et₂O, -30°C, 1 h. '(d) <u>t</u>-BuMe₂SiCl (2 equiv), imidazole (4 equiv), DMF, 25°C, 2.5 h. (e) O₃, CH₂Cl₂/MeOH, -78°C; Me₂S, -78°C; NaBH₄, EtOH, O \rightarrow 25°C. (f) PCC (3 equiv), CH₂Cl₂, NaOAc, O \rightarrow 25°C or Ag₂CO₃-Celite, PhH, reflux, 40 min. (g) Jones reagent, O \rightarrow 25°C, 25 min.

Acknowledgment. Grateful acknowledgment is extended to the National Institutes of Health (Grant CA 25332) and the American Cancer Society (Grant IN-107F, awarded to C.W.M.) for their generous support of this research. High-field NMR spectra were obtained through the National Science Foundation Regional NMR Center at the University of South Carolina (Grant CHE 78-18723). We are especially grateful to Professor Danishefsky for a generous exchange of spectra and authentic samples.

References

- (1) Burke, S. D.; Murtiashaw, C. W.; Saunders, J. O.; Dike, M. S. <u>J. Am. Chem. Soc</u>. <u>1982</u>, <u>104</u>, 872.
- (2) (a) Ranieri, R. L.; Calton, G. J. Tetrahedron Lett. 1978, 499.
 - (b) Calton, G. J.; Ranieri, R. L.; Espenshade, M. A. J. Antibiot. 1978, 31, 38.
- (3) (a) Danishefsky, S.; Vaughan, K.; Gadwood, R.; Tsuzuki, K. J. Am. Chem. Soc. 1981, 103, 4136. For other syntheses of (±)-quadrone, see:
 - (b) Bornack, W. K.; Bhagwat, S. S.; Ponton, J.; Helquist, P. <u>Ibid.</u> <u>1981</u>, <u>103</u>, 4647. (c) Kende, A. S.; Roth, B.; Sanfilippo, J.; Blacklock, T. J. <u>Ibid.</u> <u>1982</u>, <u>104</u>, 5808. (d) Takeda, K.; Shimono, Y.; Yoshii, E. <u>Ibid.</u> <u>1983</u>, <u>105</u>, 563. The Kende and Yoshii syntheses are formally based upon the Danishefsky total synthesis.
- (4) The observations by Danishefsky (ref. 3a) and Helquist (ref. 3b) indicate that the α-functionalization of the cyclopentanone in 5 and similar systems proceeds selectively, but with the wrong regiochemistry [at C(3), not C(5)] or with the undesired stereochemistry [β at C(5)]. Both authors were able to skirt these unfortunate tendencies.
- (5) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
- (6) Note that although the reduction is completely stereoselective, the orientation of the siloxy-substituent is unassigned. This is of little consequence in that the stereocenter is subsequently obliterated.
- (7) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.
- (8) Bowers, A.; Halsall, T. G.; Jones, E. R. H.; Lemin, A. J. Chem. Soc. 1953, 2555.
- (9) Fetizon, M.; Golfier, M.; Louis, J.-M. Tetrahedron 1975, 31, 171.
- (10) All yields reported herein refer to chromatographically homogeneous, isolated material. All structural assignments are fully supported by IR, MS, ¹³C NMR, 400 MHz ¹H NMR, and combustion analysis data.

(Received in USA 12 April 1983)